Skip to main content

Wampserver & php

For some stupid reason, Wamp grabs the main installation of PHP outside wamp by default. This makes no sense to me since the sole purpose of using Wamp was to get an all-at-one-shot solution..

Anyways, here is something to get it to use the php included with wamp (!!)
Add the following line to the end of the httpd.conf (click on the wamp icon in system tray , choose Apache > httpd.conf)


PHPIniDir "D:/wamp/bin/php/php5.3.5"

Comments

  1. sau đó thân thể hắn lập tức biến mất.
    đồng tâm
    game mu
    cho thuê phòng trọ
    cho thuê phòng trọ
    nhac san cuc manh
    tổng đài tư vấn luật miễn phí
    văn phòng luật
    số điện thoại tư vấn luật
    thành lập công ty

    - Có thể đạt tới đạo dung thiên địa, dù là tiên giới năm đó cũng không có mấy người ! Chẳng qua người này vẫn chưa hoàn toàn nắm giữ được !

    Thân thể quái nhân tóc bạc xuất hiện trước đại môn tiên giới ngoài trăm trượng, ánh mắt lộ ra những tia sáng kỳ dị, tay phải bỗng nhiên hướng về phía hư không chụp một cái.

    - Đi ra cho bổn quân !

    Năm khe hở thật lớn trong nháy mắt xuất hiện trong thiên địa. Những cái khe này rất sâu, mang theo âm thanh rít gào bén nhọn dường như vạch ra năm khe hở để tìm tòi trong thiên địa.

    Một cỗ lực lượng hoàn toàn khác tiên lực và nguyên lực từ trong cơ thể quái nhân tóc bạc bộc phát ra, theo những cái khe kia điên cuồng lao vào trong thiên địa. Trong nháy mắt này, tu sĩ bốn phía đều cảm thấy như long trời lở đất, thiên địa dường như đang kịch liệt lóe lên.

    Sắc mặt Thân Công Hổ tái nhợt. Bên cạnh hắn, Chiến Không Liệt cũng trở nên âm trầm. Còn Đường Ngôn Phong thì đang nắm chặt bàn tay. Ba người nhìn nhau, cũng đều thấy trong ánh mắt đối phương vẻ hoảng sợ sâu đậm.

    ReplyDelete

Post a Comment

Popular posts from this blog

Learning Spark Streaming #1

I have been doing a lot of Spark in the past few months, and of late, have taken a keen interest in Spark Streaming . In a series of posts, I intend to cover a lot of details about Spark streaming and even other stream processing systems in general, either presenting technical arguments/critiques, with any micro benchmarks as needed. Some high level description of Spark Streaming (as of 1.4),  most of which you can find in the programming guide .  At a high level, Spark streaming is simply a spark job run on very small increments of input data (i.e micro batch), every 't' seconds, where t can be as low as 1 second. As with any stream processing system, there are three big aspects to the framework itself. Ingesting the data streams : This is accomplished via DStreams, which you can think of effectively as a thin wrapper around an input source such as Kafka/HDFS which knows how to read the next N entries from the input. The receiver based approach is a little compl

Setting up Hadoop/YARN/Spark/Hive on Mac OSX El Capitan

If you are like me, who loves to have everything you are developing against working locally in a mini-integration environment, read on Here, we attempt to get some pretty heavy-weight stuff working locally on your mac, namely Hadoop (Hadoop2/HDFS) YARN (So you can submit MR jobs) Spark (We will illustrate with Spark Shell, but should work on YARN mode as well) Hive (So we can create some tables and play with it)  We will use the latest stable Cloudera distribution, and work off the jars. Most of the methodology is borrowed from here , we just link the four pieces together nicely in this blog.  Download Stuff First off all, make sure you have Java 7/8 installed, with JAVA_HOME variable setup to point to the correct location. You have to download the CDH tarballs for Hadoop, Zookeeper, Hive from the tarball page (CDH 5.4.x page ) and untar them under a folder (refered to as CDH_HOME going forward) as hadoop, zookeeper $ ls $HOME /bin/cdh/5.4.7 hadoop

Memory allocation speed check

Traditionally, in high performance systems, repeatedly allocating and deallocating memory has been found to be costly. (i.e a malloc vs free cycle). Hence, people resorted to building their own memory pool on top of the OS, dealing with fragmentation/free list maintenance etc. One of the popular techniques to doing this being Slab allocators . This post is about doing a reality check about the cost of explicitly doing an alloc() and free() cycle, given that most popular OS es, specifically Linux gotten better at memory allocation recently. Along the way, I will also compare the JVM memory allocations (which should be faster since we pay a premium for the freeing of memory via garbage collection). So, all set here we go.  The following is a comparison of native c allocations, java jvm based allocation, java direct buffer allocation. For each of them we measure the following. Allocation/free rate (rate/s): This gives you an upper bound on the single threaded throughput of your